All Uncountable Regular Cardinals Can Be Inaccessible in Hod

نویسنده

  • MOHAMMAD GOLSHANI
چکیده

Assuming the existence of a supercompact cardinal and an inaccessible above it, we construct a model of ZFC, in which all uncountable regular cardinals are inacces-

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Some Applications of Supercompact Extender Based Forcings to Hod

Supercompact extender based forcings are used to construct models with HOD cardinal structure different from those of V . In particular, a model with all regular uncountable cardinals measurable in HOD is constructed.

متن کامل

Definable Tree Property Can Hold at All Uncountable Regular Cardinals

Starting from a supercompact cardinal and a measurable above it, we construct a model of ZFC in which the definable tree property holds at all uncountable regular cardinals. This answers a question from [1]

متن کامل

Sandwiching the Consistency Strength of Two Global Choiceless Cardinal Patterns

We provide upper and lower bounds in consistency strength for the theories “ZF + ¬ACω + All successor cardinals except successors of uncountable limit cardinals are regular + Every uncountable limit cardinal is singular + The successor of every uncountable limit cardinal is singular of cofinality ω” and “ZF + ¬ACω + All successor cardinals except successors of uncountable limit cardinals are re...

متن کامل

Large cardinals and definable well-orders, without the GCH

We show that there is a class-sized partial order P with the property that forcing with P preserves ZFC, supercompact cardinals, inaccessible cardinals and the value of 2κ for every inaccessible cardinal κ and, if κ is an inaccessible cardinal and A is an arbitrary subset of κκ, then there is a P-generic extension of the ground model V in which A is definable in 〈H(κ+)V[G],∈〉 by a Σ1-formula wi...

متن کامل

Characterizing large cardinals in terms of layered posets

Given an uncountable regular cardinal κ, a partial order is κstationarily layered if the collection of regular suborders of P of cardinality less than κ is stationary in Pκ(P). We show that weak compactness can be characterized by this property of partial orders by proving that an uncountable regular cardinal κ is weakly compact if and only if every partial order satisfying the κ-chain conditio...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016